本文论述了微穿孔板声学结构的机理特点及其在吸声、消声及隔声领域的应用,并提供了本安百利辅机厂消声器的产品设计性能、规格以及制造工艺技术,可供专业人员参考。
【关键词】微穿孔板 吸声 消声 喷阻 岩棉
一、 前言
著名的声学专家、科学院院士马大猷教授一九七五年在《中国科学》上发表了独创的《微穿孔板吸声结构的理论和设计》论文。二十多年来,根据马先生的理论,微穿孔板结构得到了迅速发展,并在各个领域广泛应用。我安百利电力辅机厂是把马先生的理论应用于实践的单位之一,生产制造了各种规格的不同类型的消声器,并将小孔喷注和微穿孔板吸声结构成功结合于抗阻型消声器中,并采用不锈钢制造,使消声器不怕水,耐温防火,清洁,无污染,可耐高温,耐腐蚀,能承受高连气流冲击。经过上百家电厂及大型锅炉排汽使用后,在吸声降噪方面已经得到实践经验。被列为重要环保降噪工程单位。 本文重点介绍微穿孔板消声器的设计制造技术,同时概述微穿孔板的加工制造技术。小孔喷注消声器的设计制造请看下一篇
二、 微穿孔板吸声结构:
在板厚小于1.0毫米的薄板上穿以孔径小于1.0毫米的微孔,穿孔率在1~5%之间,后部留有一定的厚度(5~20cm)的空气层,空腔内不填任何吸声材料,这样即构成了微穿孔板吸声结构。常用单层或双层微穿孔板结构形式。微穿孔板吸声结构是一种低声质量、高声阻的共振吸声结构,其性能介于多孔吸声材料和共振吸声结构之间,其吸声频带宽度可优于常规的穿孔板共振吸声结构。研究表明,表征微穿孔板吸声特性的吸声系数和频带宽度,主要由微穿孔板结构的声质量m和声阻r来决定,而这两个因素又与微孔直径d及穿孔率p有关。微穿孔板吸声结构的相对声阻抗Z(以空气的特性阻抗ρC为单位)用式(1)计算:
z=r+jwm=jctg(WD/C) (1) 式中:
ρ -- 空气密度(公斤/厘米3);
C -- 空气中声速(米/秒);
D -- 腔深(穿孔板与后壁的距离)(毫米);
m -- 相对声质量; r -- 相对声阻;
w -- 角频率,W=2πf(f为频率);
而r和m分别由式(2)(3)表达: r=atkr/dzp (2)
m=(0.294)×10-3tkm/p (3) 式中:
t-- 板厚(毫米) d-- 孔径(毫米)
p-- 穿孔率(%) kr-- 声阻系数
kr=(1+x2/32)1/2+(2x)1/2/8×d/t
km--声质量系数 km=1+(1+(1/(9+(x2/2))))+0.85d/t
其中x=ab f,a和b为常数,对于绝热板a=0.147,b=0.32对于导热板a=0.235,b=0.21。声吸收的角频带宽度,近似地由r/m决定,此值越大,吸声的频带越宽。
r/m=(l/d2)×(kr/km) (4) 式中
l-- 常数,对于金属板l=1140,而隔热板l=500。
上式也可以用式(5)表达
r/m=50f((kr/km)/x2) (5)
而kr/km的近似计算式为
kr/km=0.5+0.1x+0.005x2 (6)
利用以上各式就可以从要求的r、m 、f求出微穿孔板吸声结构的x、d、t、p等参量。由于微穿孔板的孔径很小且稀,基声阻r值比普通穿孔板大得多,而声质量m又很小,故吸声频带比普通穿孔板共振吸声结构大得多,一般性能较好的单层或双层微穿孔板吸声结构的吸声频带宽度可以达到6~10个1/3信频程以上。这就是微穿孔板吸声结构最大的特点。
共振时的最大吸声系数α0为 α0=4r/(1+r)2 (7)
具体设计微穿孔板吸声结构时,可通过计算,也可查图表,计算结果与实测结果相近。在实际工程中为了扩大吸声频带的宽度,往往采用不同孔径、不同穿孔率的双层或多层微穿孔板复合结构。
三、微穿孔板消声器
微穿孔板声学结构在消声技术领域也早有十分广泛的应用,利用微穿孔板声学结构设计制造的微穿孔板消声器种类繁多,最简单的是直管式消声器,而多数是阻抗复合式消声器。微穿孔板消声器用金属穿孔薄板制成,常见的微穿孔板可用钢板(管)、不锈钢板(管)、合金板(管)等材料制做,由于微穿孔板后的空气层内可填装多孔性岩棉材料,即利用吸声材料的阻性吸声原理,进一步达到降噪消声目的.其吸声系数高,吸收频带宽,压力损失很小,气流再生噪声低,且易于控制。为获得宽频带高吸收效果,一般用双层微穿孔板结构。微穿孔板与外壳之间以及微穿孔板之间的空腔尺寸大小按需要吸收的频带不同而异,吸收低频空腔大些(150~200毫米),中频小些(80~120)毫米,高频更小些(30~50毫米),双层结构的前腔深度一般应小于后腔,前后腔深度之比不大于1:3,前部接近气流的一层微穿孔板穿孔率应高于后层,为减小轴向声传播的影响,可在微穿孔板消声器的空腔内每隔500毫米左右加一块横向隔板。 单层管式微穿孔板消声器是一种共振式的吸声结构。对于低频消声,当声波波长大于共振腔(空腔)尺寸时,可以应用共振消声器计算式(7)来计算微穿孔板消声器的消声量LTL: LTL=10lg(1+(a+0.25)/(a2+b2×f/fo-fo/f)2))(分贝)(7) 式中
a=rs b=sc/2πfov
r -- 相对声阻 s -- 通道截面积(米2)
v -- 板后空腔体积(米3)
c -- 空气中的声速(米/秒)
f -- 入射声波频率(赫)
f0 -- 共振频率(赫)
f0=(c/2π)×(p/tD)1/2
t=t+0.8d+1/3PD t -- 微穿孔板的厚度(米)
p -- 穿孔率(%) D -- 板后空腔深度(米)
D -- 穿孔孔径(米)
对于中频消声,微穿孔板消声器的消声量可以应用阻性消声器的计算式(8)进行计算: LTL=ψ(α0)pL/s (分贝) (8) 式中
ψ(α0) -- 消声系数,它是与吸声系数α0 有关的量,
α0和ψ(α0)相互关系经验值可由表查得
P -- 管道横断面的周长(米)
L -- 管道的长度(米)
S -- 管道横截面面积(米2)
微穿孔板消声器高频消声性能实测值比理论估算值要好。试验证明,消声量与流速有关,与消声器温升无关。流速增高,气流再生噪声提高,消声性能下降,金属微穿孔板消声器可承受较高气流速度的冲击,当流速达到70米/秒时,仍有10分贝以上的消声量。这也是微穿孔板消声器优于一般阻性消声器的又一重要特点。
我安百利电力辅机厂生产的抗喷阻型消声器对高频高压高汽流场所又结合用消声原理中的抗性原理(即利用管道的截面突变,使声波向前传播到扩张室后反射180度后使波与波振幅相等,相位相反,相互干涉,达到最理想消声效果.
|
本文论述了小孔喷注型消声器的声学结构的机理特点及其在吸声、消声及隔声领域的应用,并提供了本安百利辅机厂消声器的产品设计性能、规格以及制造工艺技术,可供专业人员参考。
【关键词】小孔喷注 阻抗复合型 吸声 消声 喷阻 岩棉
一、 前言
中国科学院声学所的马大猷教授等学者,通过理论和实验研究,提出了小孔喷注控制噪声理论,其原理是将一个大的喷口,在保持相同排气量的前提下,改为许多小孔来代替,而小孔将高频声移到人耳不敏感的超声范围,从而达到降噪的目的。小孔喷注消声器的消声量为[2]
D——喷口直径(mm),DO=1mm。
当D≤1mm时,xA1,经变换可得[5]
ΔL=27.5-30lgD
由此可见,在小孔范围内,孔径减半,可使消声量提高9dB,考虑到加工小孔的难易程度,一般选直径较小的小孔较为适宜。如果孔径太大,小孔的消声效果很差。
如果小孔间距较小,气流通过小孔后还会再汇合成大的喷注,从而使消声效果变差。为此,小孔喷注时孔的中心距应取小孔的孔径倍(喷注前主压越高,孔中心距就要越大),而孔中心距的最低值为
为了使排气通畅,考虑到小孔的阻尼作用,建议将消声器的开孔通流面积设计为排气阀通流面积的多倍。
综上所述,对小孔喷注消声器来讲,要使其具有一定的降噪效果,又不影响气动装置的正常工作,消声器的孔径、孔距、孔数3个关键参数一定要把握好。
而调研中发现,很多工厂所用的消声器这3个关键参数总有部分不满足要求。如图2所示为某厂所生产的空气分配阀用消声器,周向孔距为44.5mm,轴向孔距为13mm,孔数为48个。孔径d=2.3mm在1~3mm之间;孔距b在周向与孔径d之比为b/d=19.3,在轴向b/d=5.6,因此,在轴向的孔距偏小一点;该空气分配阀的通径D=15mm,按照前述的设计原则,小孔的总面积应为阀通流面积的多倍。这样,经计算可知,图2所示的消声器会造成排气不通畅现象发生,而该消声器在实际使用中,确实存在排气不畅的问题,加之孔轴向间距偏小,孔径2.3mm偏大,造成实际降噪量只有7dB,这两方面缺点共同作用的结果,导致操作工人在实际中常常将其拆掉不用。
图2 小孔喷注消声器
根据笔者进行实际噪声控制的经验,小孔喷注宜选择1.5mm较为合适,孔距要合理,小孔面积应为阀通流面积的多倍较好。此外,小孔喷注板应具有足够的强度及刚度,在间歇性排气气流的冲击力作用下不能产生结构噪声。
我安百利电力辅机厂生产的抗喷阻型消声器对高频高压高汽流场所又结合用消声原理中的抗性原理(即利用管道的截面突变,使声波向前传播到扩张室后反射180度后使波与波振幅相等,相位相反,相互干涉,达到最理想消声效果.
|
由于用多孔吸声材料的阻性消声器具有良好的中高频吸声特性,而该排气噪声又是以中高频噪声为主,所以,自然使人们想到用阻性消声器来降低该噪声。如图5所示为该消声器的结构示意图。
图5 阻性消声器
1.穿孔护面板 2.外壳 3.吸声材料
但调研中发现,这种消声器实际的降噪量往往小于实际使用前设计的降噪量,并且性能下降快,使用寿命短。造成上述现象的原因主要有以下3个方面。
首先,由于气流速度高,流过穿孔护面板表面时由于穿孔对气流产生扰动而产生较大的再生噪声,从而大大削弱了其降噪能力。
其次,由于这种排气具有间歇性,流速又高,所以对消声器内的结构零件产生较强的冲击力,使这些零件产生振动而辐射出结构噪声,从而降低消声功能;此外,高速冲击气流企图将多孔吸声材料刮飞到消声器之外,日积月累,会使消声器内的吸声材料逐渐减少,从而使消声器降噪性能下降。笔者在二汽锻造厂使用的英国马赛1800吨热模锻压力机离合器气缸排气口上安装的阻性消声器解剖后发现,其内几乎一半的吸声材料被刮飞掉,因此其降噪性能很差。
最后,从气缸内经过空气分配阀排出的压缩空气中含有一定量的油、水及杂质,使用环境中又有粉尘。所以,调研中发现,消声器内多孔吸声材料表面的玻璃布及近表层的多孔吸声材料中的微孔已被油、水泥垢糊满,使用时间很长的阻性消声器内的多孔吸声材料微孔内几乎都浸满了油和水,多孔吸声材料已完全变质腐烂,这些都导致多孔吸声材料的吸声性能严重下降。所以,吸水及吸油性能很好的多孔吸声材料不宜用在空气 排气噪声控制用消声器内。
|